Failure Analysis : Analysis of the drive shaft fracture of the bucket wheel excavator

ScienceDirect – Engineering Failure Analysis : Analysis of the drive shaft fracture of the bucket wheel excavator.

Mile Savkovića,, Milomir Gašića, Dragan Petrovića, Nebojša Zdravkovića, Radmila Pljakićb

a University of Kragujevac, Faculty of Mechanical Engineering Kraljevo, Dositejeva 19, 36000 Kraljevo, Serbia
b Laboratory for Testing of Materials High School Trstenik, Radoja Krstića 19, 37240 Trstenik, Serbia

Abstract

Drive in most bucket wheel excavators (BWE) is accomplished through its electric motor, cardan shaft and planetary gearbox. In the BWE SchRs630/6×25, the planetary gearbox is cantilevered at the end of the hollow shaft which transmits the torque through the sprocket to the caterpillar track chain. In this BWE, a the drive shaft fracture occurs at the point of support on the penetration side.

Experimental testing of the chemical composition and mechanical properties of the material of the shaft and metallographic inspections of the fracture surface by means of electronic and light microscopes carried out in the first part of the paper have shown that there are no significant inhomogeneities and errors in the material of the shaft and that they do not cause damage. Further, the analysis of results referring to the mechanical properties and chemical composition of the repaired shaft at the point of welding, and particularly in the transition zone, shows that they considerably deviate from those prescribed for the material used. Significant inhomogeneity of the material, occurrence of cracks as well as the difference in the microstructure appear in this zone, which is the cause of shaft damage.

The second part of the paper presents the FEM analysis of effects of the cantilever type of support of the planetary gearbox and stress concentration at the point of support due to inadequate finishing, which caused the occurrence of an initial crack. The user unsuccessfully tried to eliminate this weakness by repair welding of the shaft.

Highlights

► The cause of the drive shaft fracture of the BWE SchRs630/6×25 was examined. ► The shaft fracture did not occur due to any errors in the material. ► The cause of the initial crack is inadequate machining of the shaft. ► The cause of the shaft fracture is the badly performed repair welding process.

Analyse de défaillance d’un cas de fatigue thermique sur un laiton moulé

Dhouha Melloulia, Nader Haddara, Alain Kösterb, Hassine Ferid Ayedia

a Laboratory of Industrial Chemistry and materials, National Engineering School of Sfax, Box1173, W3038, Sfax, Tunisia
b Centre des matériaux Pierre Marie Fourt, Ecole des Mines de Paris

Abstract

This research has been conducted to elucidate the mechanisms of brass die casting failure. A die was examined and we have evaluated the causes of crack failure mechanisms after use in brass die casting. The dominating failure mechanism in the investigated die was thermal fatigue cracking. Crack initiation is associated to accumulation of the local plastic strain that occurs during each casting cycle. The crack growth is facilitated by a number of elements: oxidation of the cracks’ surfaces, filling of brass and softening of the die material.

Analyse de défaillance de tubes en acier inoxydable (304) dans un échangeur d’unité de production de chaleur

un cas intéressant de fatigue corrosion

Auteur (s): MR Jahangiri 

Métallurgie Département, Niroo Research Institute, Téhéran 14686, Iran

This work includes results of studies and experiments conducted on heatexchanger (heater) tubes of an energy production unit to determine the causes of their fractures. Experiments indicated that the main mechanism of such tube fractures is the simultaneous presence of relatively high vibrational bending stresses and corrosive agents. It was shown that the role of a vibrational bending stress due to high velocity of input steam is very impressive. The important point in this study was the branching of corrosionfatigue cracks during their growth in presence of NaOH and chloride ions. The use of impingement plates and water chemistry control were the most appropriate methods to prevent such failures.

©2011 American Society of Mechanical Engineers

Pour en savoir plus : Analyse de défaillance de type 304 Tubes en acier inoxydable dans une production de chaleur Echangeurs énergie des usines.


Le Cetim vous aide à analyser les défaillances des installations fluides et écoulement

VOS ATTENTES

  • expertises et analyses d’avaries
  • aide au choix de composants
  • état des lieux et optimisation d’une installation

NOS SOLUTIONS

Nous pouvons vous accompagner dans de nombreux domaines d’application (robinetterie, machines tournantes, bassins de pompage, échangeurs thermiques, mélangeurs, filtres) pour vous aider à

  • analyser les causes et origines des désordres constatés
  • reconcevoir et optimiser vos composants hydrauliques
  • caractériser et qualifier ( essais en fluide incompressible 10 m/sec, 250 bar et 7 000 kW en eau et essais en fluide compressible 50 bar et 15 kg/sec/air)
  • redimensionner votre installation (simulation numérique des fluides, optimisation des formes)

VOS BÉNÉFICES

  • compétence multidisciplinaire : mécanique, hydraulique, électrique et acoustique
  • maîtrise des techniques numériques et expérimentales
  • des moyens d’essais uniques en Europe :